A Fully Nonlinear Conformal Flow on Locally Conformally Flat Manifolds

نویسندگان

  • PENGFEI GUAN
  • GUOFANG WANG
چکیده

We study a fully nonlinear flow for conformal metrics. The long-time existence and the sequential convergence of flow are established for locally conformally flat manifolds. As an application, we solve the σk-Yamabe problem for locally conformal flat manifolds when k 6= n/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary

We prove existence and compactness of solutions to a fully nonlinear Yamabe problem on locally conformally flat Riemannian manifolds with umbilic boundary.

متن کامل

Compactness for Conformal Metrics with Constant Q Curvature on Locally Conformally Flat Manifolds

In this note we study the conformal metrics of constant Q curvature on closed locally conformally flat manifolds. We prove that for a closed locally conformally flat manifold of dimension n ≥ 5 and with Poincarë exponent less than n−4 2 , the set of conformal metrics of positive constant Q and positive scalar curvature is compact in the C∞ topology.

متن کامل

Conformal mappings preserving the Einstein tensor of Weyl manifolds

In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...

متن کامل

On Positive Solutions to Semi-linear Conformally Invariant Equations on Locally Conformally Flat Manifolds

In this paper we study the existence and compactness of positive solutions to a family of conformally invariant equations on closed locally conformally flat manifolds. The family of conformally covariant operators Pα were introduced via the scattering theory for Poincaré metrics associated with a conformal manifold (Mn, [g]). We prove that, on a closed and locally conformally flat manifold with...

متن کامل

Conformally flat Einstein-like 4-manifolds and conformally flat Riemannian 4-manifolds all of whose Jacobi operators have parallel eigenspaces along every geodesic

A local classification of all locally conformal flat Riemannian 4-manifolds whose Ricci tensor satisfies the equation ∇ ( ρ− 1 6 sg ) = 1 18 ds⊙ g as well as a local classification of all locally conformal flat Riemannian 4-manifolds for which all Jacobi operators have parallel eigenspaces along every geodesic is given. Non-trivial explicit examples are presented. The problem of local descripti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003